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Abstract
Agriculture is an essential field that includes crop production, plant and fruit
growing, and livestock. Plant disease is a significant challenge in agriculture,
which can drastically impact crop production and lead to reduced productivity
and potentially severe shortages. Hence, it is essential to detect plant diseases as
fast as possible in order to start separating diseased ones from healthy ones.
However, this process is arduous and challenging to accomplish manually. This
paper shows a possible automation technique using EfficientNet CNN models.
Gray-level, binarized, and color-level datasets were separately given in this
study. The images in the dataset were resized. In order to increase the training
data's variety, the input images underwent a horizontal flip. The data was rotated,
helping the model in handling minor orientation variances. Randomized zoom
was implemented to improve the model’s ability to recognize leaf images from
varying distances and sizes. The highest training accuracy achieved is 99.81%
with the EfficientNetB5 model at 50 epochs and a batch size of 128. The
EfficientNetB0 model achieves the lowest training accuracy with 97.17% accuracy
at 20 epochs and a batch size of 16, however. The highest testing accuracy achieved
is 97.83% by the EfficientNetB7 model with 50 epochs and a batch size of 64; on
the other hand, the lowest testing accuracy is 77.84% by the EfficientNetB4 model
with 20 epochs and a batch size of 32.
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1. Introduction
Oxygen and edible plants are integral to people’s daily life. It is known that as human civilization has risen,
agriculture has become more advanced (Hughes and Salathe, 2015). In an environment where the population
is growing, there is always a need for sufficient amounts of agricultural products. With the onset of hunger,
various diseases begin to emerge.
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Tomato, Solanum lycopersicum, is a widely used farm good which that be found in many breakfasts.
Solanum lycopersicum is from Solanaceae family, originally from the Andean region of South America (OECD,
2017). The Solanum genus comprises around 1,500 species (OECD, 2017). Solanum lycopersicum originated
from two wild progenitor species, Solanum pimpinellifolium and Solanum cerasiforme (OECD, 2017). In 2020,
186.821 million metric tonnes of tomatoes were produced, and in 2021, it climbed up to 189.133 million
(François-Xavier, 2021). Major tomato producers include China, with 67.538 million tons, India, with 21.181
million tons, Turkey, with 13.095 million tons, and the USA, with 10.475 million tons (François-Xavier,
2021).

Diseases and pests negatively affect agricultural goods in terms of quality and quantity. Plant diseases
in tomatoes can happen due to pathogens, including fungal, bacterial, phytoplasma, virus, viral, nematode,
and viroid pathogens. In the below table (Table 1), you may see some of the pathogens in tomato plants.

Table 2: Machine Learning and CNN Differences

Traditional Machine Learning Methods Deep Learning Methods 

They need manual design features and classifiers CNNs are capable of autonomously learning 
features from huge volumes of data. 

Image segmentation techniques include threshold 
segmentation, along with Roberts, Prewitt, Sobel, 
Laplace, and Kirsh edge detection methods, and 
region segmentation. When it comes to feature 

extraction methods, tools such as SIFT, HOG, LBP, 
along with shape, color, and texture feature 

extraction are commonly used, For classification, 
methods like SVM, BP, and Bayesian approaches 

are typically used. 

Only CNN is needed. 

The imaging environment requirements are 
relatively stringent, necessitating a high contrast 

between lesion and non- lesion areas, and minimal 
noise. 

The combination of adequate learning data 
and high-performance computing units is 

crucial for achieving optimal results in 
machine learning tasks. 

Having sufficient learning data and using powerful 
computing units are essential elements in obtaining 
the best outcomes in machine learning endeavors. 

Deep learning methods possess the 
capability to adapt to specific changes in 

both real and intricate natural environments. 

Also, environmental stress and pests, such as Aphids, Tomato hornworm (Manduca quinquemaculata),
Whitefly (Trialeurodes vaporariorum and Bemisia tabaci) can induce diseases in tomatoes. These diseases may
yield quality loses, hence accurate and early detection is essential. In the past, the detection processes were
performed manually. The process of identifying plant diseases and pests through visual inspection by experts

Pathogens Pathogen Names 

Fungal Infections 
Alternaria solani, Phytophthora infestans, Colletotrichum coccodes, Fusarium 

oxysporum f.sp. lycopersici, Verticillium dahliae or V. albo-atrum 

Bacterial Infections 
Pseudomonas syringae pv. tomato, Xanthomonas vesicatoria, Pseudomonas 

corrugata 

Viral Infections Tomato Spotted Wilt Virus., Tobacco Mosaic Virus., Tomato yellow leaf 
curl virus. 

Nematode Infections Meloidogyne spp. 

Viroid Potato spindle tuber viroid, Tomato apical stunt viroid 

Table 1: Tomato Pathogens and their Scientific Names

Source: Kanda et al. (2022), Panno et al. (2021), Das (2020), Gilardi et al. (2021), Rivarez et al. (2021), Rodrigues andFurlong
(2022)
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is laborious and often prone to a significant amount of errors (Liu and Wang, 2021). For farming applications,
the development of efficient, quick, and highly reliable computer-assisted disease detection systems has
emerged.

Machine learning models were developed prior to the advent of deep learning models. For instance,
Dubey and Jalal’s study detected three different apple fruits using local binary patterns and k-means
clustering methods (Dubey and Jalal, 2012). Also, a Support Vector Machine (SVM) was used to classify
(Dubey and Jalal, 2012). Singh and Misra (2017) classified five different diseases and four different plant
species using SVM. Conventional machine-learning techniques are only effective when feature extraction is
done properly (Altunta and Kocamaz, 2021). Furthermore, segmentation is important for feature extraction
(Altunta and Kocamaz, 2021). There are major differences between traditional machine learning algorithms
and deep learning techniques. The Table 2 above, modified from Liu et al.’s study, shows the difference (Liu
and Wang, 2021).

In computational agriculture, leaf detection is very significant (Singh and Misra, 2017). After the recent
advancements, multiple neuron networks start to become popular: Convolutional Neural Networks (CNN),
Recurrent Neural Networks (RNN), Feedforward Neural Networks (FNN), and Artificial Neural Networks
(ANN) are only some of them. These neuron networks help to detect diseases easier as plant diseases produce
a variety of visible characteristics/symptoms, which neural networks can learn.

The objective of this research paper is to identify the most accurate model for tomato leaf disease
classification among all the EfficientNet models. Color-level, gray-level, and binarized image datasets were
used along with eight CNNs. Also, many variables were tested in this research paper, including EPOCHs
and batch sizes. This is the only paper in the literature that compares all the EfficientNets for tomato leaf
disease detection.

2. Literature Review
Considerable advancements have been achieved in detecting diseases in various plants, including bananas,
cucumbers, apples, tomatoes, rice, and peppers (Kanda et al., 2022; Zhou et al., 2019).

Mohanty et al. (2016) analyzed 54.306 plant leaf images from a range of 38 class labels. The team modified
the image dimensions to 256 x 256 pixels, which was initially 128 x 128, and used AlexNet and GoogLeNet for
the ImageNet dataset. They used three different datasets, and the datasets were in three categories: color, gray-
scale, and leaf segmented. The team applied transfer learning and used a color dataset in GoogLeNet; they
split the dataset into 80/20 for the training and test set, achieving a 99.34% accuracy.

Durmus et al. (2017) used tomato leaf images from the PlantVillage dataset, consisting of ten different
classes, including healthy tomato leaves. The study implemented CNNs, both AlexNet and SqueezeNet. It was
found that despite AlexNet marginally outperforming SqueezeNet in terms of classification accuracy, it required
approximately ten times the model size and three times the inference time. Also, the paper suggested that
SqueezeNet can be used for mobile deep-learning classification. AlexNet achieved an accuracy of 95.65%,
whereas SqueezeNet attained an accuracy of 94.30%.

Liu et al. (2017) inspired by GoogLeNet and ResNet-20 in order to classify 13,689 apple leaf diseases.
The apple images were gathered from China. The suggested model showed an accuracy of 97.62%, and
compared to the AlexNet model, the suggested model significantly reduced the parameter count and
converges faster.

Tan et al. (2016) used a method involving the use of CNNs to identify apple pathological images was
introduced. An accuracy of up to 96.08% is achieved for this approach, along with a notably fast convergence
rate.

Karthik et al. (2020) used a PlantVillage dataset with 120,000 images. The dataset was divided into tomato
early blight, late blight, and leaf mold. They proposed an attention-based deep residual network in order to
detect tomato leaf infection. In the 5-fold cross-validation, the proposed model achieved an accuracy of 98% on
the validation sets.
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Waheed et al. (2020) used an efficient maize leaf recognition model based on an optimized DenseNet with
fewer parameters. The proposed model achieved an accuracy of 98.06%. It used fewer parameters than many
CNN models, such as EfficientNet, VGG19Net, and NASNet.

Huang et al. (2019) used the AI Challenger dataset with eight plant species: tomato, strawberry, citrus,
pepper, potato, corn, apple, grape, peach, and nineteen plant diseases. The suggested model was comprised of
two sub-models. The first was a leaf segmentation model, which used a U-Net to distinguish leaves from the
background. The second sub-model, the two-headed network, was a plant disease classification model. This
network classified plant diseases using feature extraction from some CNNs. The proposed model achieved
98.07% in plant classification and 87.45% accuracy in disease recognition.

Sethy et al. (2020) used a dataset with 5932 on-field images of four types of rice leaf diseases, including
bacterial blight, blast, brown spot, and tungro. 11 CNN models were examined, and a combination of a
ResNet50 model with an SVM classifier, achieved an accuracy of 98.38%.

Adedoja et al. (2019) used a CNN architecture on NASNet, which was trained and tested with the PlantVillage
dataset. These images showed different infection locations on the plants. The model demonstrated an accuracy
rate of 93.82%.

Zhao et al. (2022) used CNN and a spatial attention mechanism to get a 95.20% success rate for the three
potato diseases in their web-based real-time plant disease detection system.

DeChant et al. (2017) used a computational pipeline of CNNs, feeding a dataset of 1,028 images showing
infected leaves and 768 images of non-infected leaves. The method achieved an accuracy of 96.7%.

Ma et al. (2018) used PlantVillage with different augmentation techniques and a deep convolutional neural
network to get an accuracy of 93.4%.

Khan et al. (2022) proposed an automated framework for the classification of cucumber leaf diseases.
The team used deep learning and optimal feature selection techniques in order to achieve an accuracy of
98.4%.

Sladojevic et al. (2016) used last-generation CNNs in order to detect thirteen different plant diseases. The
proposed model is for identifying diseases in various crops. They utilized a dataset containing 33,000 images
and achieved an accuracy of 96.37%.

3. Dataset
In this study a total of 11,000 images of tomato leaves were used, which are among the open-access PlanVillage
dataset (Hughes and Salathe, 2015). Some of the sample images can be seen in Figures 1 to 3.

Table 3: Details of Classes in the Dataset

Class Name Scientific Name Training Test Total 

Healthy - 900 200 1100 

Tomato Mosaic Virus Tomato Mosaic Virus 900 200 1100 

Tomato Yellow Curl Leaf Virus Begomovirus 900 200 1100 

Target spot Corynespora cassiicola 900 200 1100 

Spider Mites Tetranychus urticae 900 200 1100 

Septoria leaf spot Septoria lycopersici 900 200 1100 

Leaf mold Fulvia fulva 900 200 1100 

Late blight Phytophthora infestans 900 200 1100 

Early blight Alternaria solani 900 200 1100 

Bacterial spot Phytophthora infestans 900 200 1100 
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Figure 2: Grey-Scale Sample Tomato Leaves
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Figure 3: Binarized Sample Tomato Leaves

Figure 1: Color-Level Sample Tomato Leaves in the Dataset

Tomato Healthy Tomato Mosaic Virus Tomato Yellow Curl 
Leaf Virus 

Tomato Target spot Tomato Two‑spotted 
spider mites 

     
Tomato Septoria Leaf 

Spot Tomato Leaf Mold Tomato Late Blight Tomato Early Blight Tomato Bacterial Spot 

    
 



Kaan Eroltu /  Int.Artif.Intell.&Mach.Learn. 4(1) (2024) 61-79 Page 66 of 79

5. Methods
The hardware used for this experiment has a 2,4 GHz Quad-Core Intel Core i5, 8 GB RAM 2133 MHz
LPDDR3, and Tesla P100-PCIE GPU. Experiments have been performed using Python code. The grayscale,
color-level, and binarized images in the dataset were independently fed into the pre-trained EfficientNets
(EfficientNet0 to EfficientNet7). For each of the three datasets, performance results were obtained using
softmax, used as an activation function. Softmax is a function that transforms a K-dimensional vector z
with any real numbers into a K-dimensional vector with real values between 0 and 1 that sum to 1. The
softmax function transforms a small or negative input into a low probability, while a large input is
converted into a high probability. The results always remain between 0 and 1. The mathematical expression
for softmax is:

All eight different EfficientNet models were tested with different Epochs (20, 30, 40, 50) and Batch sizes (16,
32, 64, 128) . A total of 384 test results were obtained. 128 test results, on the other hand, were reported because
the accuracies of binarized and gray-scale datasets were lower than color-level datasets.

Three different datasets were separately given in this study, as it was mentioned. Images were resized as
the images in the dataset were 256x256 pixels. A horizontal flip to the input image along its vertical axis was
applied in order to enhance the diversity of the training data. The data was rotated between -18 and +18
degrees as it helped the model to become more robust to slight differences in orientation. Randomized zoom is
vital in enhancing the model's capability to interpret leaf images at diverse distances and scales. Moreover, the
backgrounds of all the images were cleared in order to increase the accuracy of the model.

Figure 4: EfficientNet Model Scaling (Tan and Le, 2019)

Note: (a) serves as an example of a baseline network. (b) to (d) represent conventional scaling techniques that solely increase
one dimension, be it network width, depth, or resolution. (e) introduces a compound scaling approach that consistently
scales all three dimensions using a set ratio (Tan and Le, 2019). The backbone of this experiment, as earlier stated, is
EfficientNet.

4. EfficientNet Architectures
EfficientNet is a pre-trained CNN, which has been used in this paper. EfficientNet is a CNN architecture and
a scaling technique that scales depth, width, and resolution in a uniform manner using a compound coefficient
for convolutional architectures (Figure 4). With an impressive 84.3% top-1 accuracy on ImageNet, EfficientNet-
B7 outperforms the best existing CNN by being 8.4 times more compact and 6.1 times faster during inference
(Tan and Le, 2019; Eroltu, 2023). EfficientNet-B1 is 7.6 times more compact and 5.7 times quicker than ResNet-
152 (Tan and Le, 2019; Eroltu, 2023). Tan et al. (2019) proposed a straightforward but efficient method of
compound scaling (Tan and Le, 2019).
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Figure 5: Proposed Model for this Study

6. Model Performance Metrics
Performance metrics have been used to deduce the reliability of the study. The performance matrices that are
used in this study:

The accuracy metric is used to represent the data’s overall classification performance. The precision is used
in order to express the success of finding negative samples, while the recall metric measures the success of
finding positive samples. The f-score metric calculates the harmonic mean of precision and sensitivity, providing
a balanced measure of their combined performance.

7. Results and Discussion
As mentioned in the experiment section before, the gray-scale and binarized datasets were not reported in this
study due to their lower accuracies compared to the color-level dataset.

In Table 4, performance metrics are obtained from pre-trained EfficientNet models. The highest training
accuracy has been achieved using EfficientNetB3, with an epoch count of 50 and a batch size of 128,
resulting in an accuracy of 99.66%. The second highest accuracy has been recorded in EfficientNetB4, with
an epoch count of 30 and a batch size of 128, resulting in an accuracy of 99.64%. The pre-trained EfficientNet6
ranked third in accuracy, with 40 epochs and a batch size of 64, achieving an accuracy of 99.62%. The
highest scores in terms of accuracy, precision, and F-score have also been obtained with the EfficientNetB3.
The lowest accuracy, precision, and f-score have been noted in EfficientNetB0, as we would expect. The
experiment for EfficientNetB7 with a batch size of 128 couldn’t be carried out because the computer’s CPU
was inadequate.

In Table 5, performance metrics obtained from pre-traaboined EfficientNet models and all of the models
were compared in a table. The highest test accuracy has been achieved using EfficientNetB7, with an epoch
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Pre-trained CNN 
Model 

EPOCH Batch Size 
Accuracy 

(%) 
Precision 

(%) 
Recall 

(%) 
F-score 

(%) 

EfficientNetB0 20 16 97.17 97.37 96.90 97.13 

EfficientNetB0 30 16 97.90 98.04 97.87 97.95 

EfficientNetB0 40 16 98.25 98.34 98.16 98.25 

EfficientNetB0 50 16 98.61 98.67 98.57 98.62 

EfficientNetB0 20 32 98.84 98.94 98.74 98.84 

EfficientNetB0 30 32 98.41 98.47 98.34 98.40 

EfficientNetB0 40 32 99.07 99.12 99.05 99.08 

EfficientNetB0 50 32 98.98 99.04 98.95 99.00 

EfficientNetB0 20 64 98.81 98.91 98.74 98.82 

EfficientNetB0 30 64 98.97 99.01 98.92 98.96 

EfficientNetB0 40 64 99.22 99.25 99.17 99.21 

EfficientNetB0 50 64 98.86 98.90 98.86 98.88 

EfficientNetB0 20 128 99.40 99.43 99.36 99.40 

EfficientNetB0 30 128 99.57 99.60 99.51 99.55 

EfficientNetB0 40 128 99.54 99.58 99.53 99.55 

EfficientNetB0 50 128 99.52 99.53 99.51 99.52 

EfficientNetB1 20 16 98.17 98.33 98.07 98.20 

EfficientNetB1 30 16 98.01 98.23 97.91 98.07 

EfficientNetB1 40 16 98.48 98.68 98.44 98.56 

EfficientNetB1 50 16 98.45 98.58 98.27 98.42 

EfficientNetB1 20 32 97.51 97.77 97.36 97.56 

EfficientNetB1 30 32 98.00 98.11 97.93 98.02 

EfficientNetB1 40 32 98.38 98.57 98.29 98.43 

EfficientNetB1 50 32 99.27 99.31 99.25 99.28 

EfficientNetB1 20 64 98.97 99.02 98.93 98.97 

EfficientNetB1 30 64 98.69 98.72 98.59 98.65 

EfficientNetB1 40 64 99.50 99.50 99.36 99.43 

EfficientNetB1 50 64 99.21 99.22 99.16 99.19 

EfficientNetB1 20 128 99.38 99.38 99.36 99.37 

EfficientNetB1 30 128 99.28 99.34 99.28 99.31 

EfficientNetB1 40 128 99.38 99.39 99.34 99.36 

EfficientNetB1 50 128 99.21 99.24 99.19 99.21 

EfficientNetB2 20 16 97.67 97.90 97.43 97.66 

Table 4: Training of EfficientNet Models and Performance Evaluations
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Table 4 (Cont.)

EfficientNetB2 30 16 97.99 98.19 97.92 98.05 

EfficientNetB2 40 16 98.97 99.06 98.91 98.98 

EfficientNetB2 50 16 98.36 98.56 98.20 98.38 

EfficientNetB2 20 32 97.60 97.64 97.52 97.58 

EfficientNetB2 30 32 98.54 98.65 98.48 98.56 

EfficientNetB2 40 32 99.00 99.01 98.87 98.94 

EfficientNetB2 50 32 99.13 99.19 99.12 99.15 

EfficientNetB2 20 64 98.30 98.52 98.24 98.38 

EfficientNetB2 30 64 98.48 98.54 98.47 98.50 

EfficientNetB2 40 64 99.42 99.42 99.42 99.42 

EfficientNetB2 50 64 99.56 99.58 99.56 99.57 

EfficientNetB2 20 128 99.23 99.26 99.21 99.23 

EfficientNetB2 30 128 99.34 99.36 99.29 99.32 

EfficientNetB2 40 128 99.58 99.58 99.57 99.57 

EfficientNetB2 50 128 99.22 99.23 99.14 99.18 

EfficientNetB3 20 16 97.30 97.63 97.01 97.32 

EfficientNetB3 30 16 97.94 98.10 97.77 97.93 

EfficientNetB3 40 16 99.03 99.07 98.97 99.02 

EfficientNetB3 50 16 98.51 98.63 98.49 98.56 

EfficientNetB3 20 32 98.09 98.24 98.01 98.12 

EfficientNetB3 30 32 98.50 98.63 98.40 98.51 

EfficientNetB3 40 32 98.72 98.86 98.67 98.76 

EfficientNetB3 50 32 99.06 99.07 99.05 99.06 

EfficientNetB3 20 64 98.63 98.82 98.53 98.67 

EfficientNetB3 30 64 98.99 99.09 98.97 99.03 

EfficientNetB3 40 64 99.61 99.61 99.61 99.61 

EfficientNetB3 50 64 99.42 99.45 99.38 99.41 

EfficientNetB3 20 128 99.09 99.16 99.00 99.08 

EfficientNetB3 30 128 99.61 99.65 99.61 99.63 

EfficientNetB3 40 128 99.24 99.34 99.20 99.27 

EfficientNetB3 50 128 99.66 99.67 99.63 99.65 

EfficientNetB4 20 16 98.48 98.59 98.24 98.41 

EfficientNetB4 30 16 98.09 98.20 98.01 98.10 

EfficientNetB4 40 16 98.72 98.82 98.58 98.70 

EfficientNetB4 50 16 98.87 99.04 98.84 98.94 

EfficientNetB4 20 32 98.59 98.73 98.52 98.62 

EfficientNetB4 30 32 98.37 98.48 98.28 98.38 

EfficientNetB4 40 32 98.77 98.86 98.75 98.80 

EfficientNetB4 50 32 99.61 99.68 99.56 99.62 

EfficientNetB4 20 64 98.95 99.01 98.87 98.94 

EfficientNetB4 30 64 99.39 99.43 99.38 99.40 
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Table 4 (Cont.)

EfficientNetB4 40 64 99.41 99.43 99.36 99.40 

EfficientNetB4 50 64 98.96 99.14 98.89 99.01 

EfficientNetB4 20 128 98.89 99.06 98.98 99.02 

EfficientNetB4 30 128 99.64 99.64 99.64 99.64 

EfficientNetB4 40 128 99.18 99.21 99.12 99.16 

EfficientNetB4 50 128 99.39 99.40 99.34 99.37 

EfficientNetB5 20 16 97.41 97.67 97.23 97.45 

EfficientNetB5 30 16 98.37 98.48 98.24 98.36 

EfficientNetB5 40 16 99.11 99.16 99.06 99.11 

EfficientNetB5 50 16 99.14 99.22 99.03 99.12 

EfficientNetB5 20 32 98.15 98.32 98.05 98.18 

EfficientNetB5 30 32 98.48 98.56 98.45 98.50 

EfficientNetB5 40 32 99.03 99.09 99.01 99.05 

EfficientNetB5 50 32 99.32 99.37 99.30 99.33 

EfficientNetB5 20 64 98.91 98.97 98.80 98.88 

EfficientNetB5 30 64 98.42 98.56 98.29 98.42 

EfficientNetB5 40 64 99.35 99.39 99.28 99.33 

EfficientNetB5 50 64 99.05 99.07 99.03 99.05 

EfficientNetB5 20 128 99.05 99.16 99.01 99.08 

EfficientNetB5 30 128 99.35 99.41 99.32 99.36 

EfficientNetB5 40 128 99.53 99.53 99.53 99.53 

EfficientNetB5 50 128 99.81 99.89 99.81 99.85 

EfficientNetB6 20 16 97.96 98.21 97.76 97.98 

EfficientNetB6 30 16 98.56 98.68 98.38 98.53 

EfficientNetB6 40 16 98.85 98.89 98.80 98.84 

EfficientNetB6 50 16 99.26 99.34 99.12 99.23 

EfficientNetB6 20 32 98.25 98.57 98.19 98.38 

EfficientNetB6 30 32 99.09 99.24 99.00 99.12 

EfficientNetB6 40 32 99.02 99.08 98.99 99.03 

EfficientNetB6 50 32 98.80 98.89 98.78 98.83 

EfficientNetB6 20 64 98.96 99.04 98.88 98.96 

EfficientNetB6 30 64 98.90 98.97 98.82 98.90 

EfficientNetB6 40 64 99.62 99.65 99.59 99.62 

EfficientNetB6 50 64 99.06 99.14 99.01 99.07 

EfficientNetB6 20 128 99.34 99.35 99.30 99.32 

EfficientNetB6 30 128 99.48 99.49 99.47 99.48 

EfficientNetB6 40 128 99.50 99.54 99.48 99.51 

EfficientNetB6 50 128 99.60 99.60 99.60 99.60 

EfficientNetB7 20 16 97.50 97.78 97.13 97.45 

EfficientNetB7 30 16 98.33 98.44 98.25 98.34 

EfficientNetB7 40 16 98.71 98.84 98.64 98.74 
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Table 4 (Cont.)

EfficientNetB7 50 16 98.38 99.47 99.38 98.92 

EfficientNetB7 20 32 98.11 98.32 97.96 98.14 

EfficientNetB7 30 32 98.54 98.72 98.48 98.60 

EfficientNetB7 40 32 99.18 99.29 99.14 99.21 

EfficientNetB7 50 32 99.45 99.45 99.45 99.45 

EfficientNetB7 20 64 98.08 98.15 97.88 98.01 

EfficientNetB7 30 64 98.78 98.82 98.76 98.79 

EfficientNetB7 40 64 99.01 99.09 98.93 99.01 

EfficientNetB7 50 64 99.42 99.50 99.42 99.46 

EfficientNetB7 20 128 - - - - 

EfficientNetB7 30 128 - - - - 

EfficientNetB7 40 128 - - - - 

EfficientNetB7 50 128 - - - - 

Pre-trained CNN 
Model 

EPOCH Batch Size 
Accuracy 

(%) 
Precision 

(%) 
Recall 

(%) F-score (%) 

EfficientNetB0 20 16 92.95 93.71 92.55 93.13 

EfficientNetB0 30 16 85.54 86.06 85.34 85.70 

EfficientNetB0 40 16 88.90 89.37 88.54 88.95 

EfficientNetB0 50 16 92.83 92.97 92.67 92.82 

EfficientNetB0 20 32 89.50 89.85 89.02 89.43 

EfficientNetB0 30 32 83.80 84.08 83.40 83.74 

EfficientNetB0 40 32 84.58 85.14 84.01 84.57 

EfficientNetB0 50 32 92.03 92.23 91.75 91.99 

EfficientNetB0 20 64 89.02 89.35 88.78 89.06 

EfficientNetB0 30 64 84.24 85.20 83.52 84.35 

EfficientNetB0 40 64 85.88 86.11 85.68 85.90 

EfficientNetB0 50 64 94.59 94.69 94.39 94.54 

EfficientNetB0 20 128 89.14 89.88 88.69 89.28 

EfficientNetB0 30 128 93.13 93.54 92.85 93.20 

EfficientNetB0 40 128 95.81 96.15 95.48 95.81 

EfficientNetB0 50 128 95.11 95.37 94.90 95.13 

Table 5: Test Table
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EfficientNetB1 20 16 94.27 94.72 94.07 94.40 

EfficientNetB1 30 16 95.55 96.01 95.47 95.74 

EfficientNetB1 40 16 89.42 89.78 89.06 89.42 

EfficientNetB1 50 16 89.02 89.62 88.58 89.10 

EfficientNetB1 20 32 92.99 93.45 92.59 93.02 

EfficientNetB1 30 32 89.34 90.30 88.78 89.53 

EfficientNetB1 40 32 91.59 92.18 91.11 91.64 

EfficientNetB1 50 32 87.46 88.27 86.86 87.56 

EfficientNetB1 20 64 90.99 91.95 90.67 91.30 

EfficientNetB1 30 64 95.23 95.64 94.95 95.30 

EfficientNetB1 40 64 88.30 88.77 88.06 88.53 

EfficientNetB1 50 64 91.51 91.90 91.35 91.62 

EfficientNetB1 20 128 89.97 90.38 89.64 90.00 

EfficientNetB1 30 128 93.79 94.27 93.34 93.80 

EfficientNetB1 40 128 94.65 94.96 94.49 94.72 

EfficientNetB1 50 128 89.88 90.49 89.64 90.06 

EfficientNetB2 20 16 92.47 92.96 92.07 92.51 

EfficientNetB2 30 16 91.51 91.93 91.27 91.60 

EfficientNetB2 40 16 84.42 85.25 83.81 84.52 

EfficientNetB2 50 16 91.43 91.83 90.91 91.37 

EfficientNetB2 20 32 92.31 92.94 91.83 92.38 

EfficientNetB2 30 32 83.69 84.14 83.13 83.63 

EfficientNetB2 40 32 88.34 89.17 87.74 88.45 

EfficientNetB2 50 32 94.87 95.39 94.47 94.93 

EfficientNetB2 20 64 86.50 87.60 85.77 86.68 

EfficientNetB2 30 64 92.72 93.10 92.44 92.77 

EfficientNetB2 40 64 95.13 95.24 94.89 95.06 

EfficientNetB2 50 64 90.96 91.23 90.73 90.98 

EfficientNetB2 20 128 91.20 91.65 91.12 91.38 

EfficientNetB2 30 128 93.71 93.90 93.67 93.78 

EfficientNetB2 40 128 95.15 95.37 94.90 95.13 

EfficientNetB2 50 128 92.80 93.41 92.64 93.02 

EfficientNetB3 20 16 90.83 91.20 90.46 90.83 

EfficientNetB3 30 16 86.34 86.34 86.81 86.57 

EfficientNetB3 40 16 87.30 87.93 86.94 87.43 



Kaan Eroltu / Int.Artif.Intell.&Mach.Learn. 4(1) (2024) 61-79 Page 73 of 79

Table 5 (Cont.)

EfficientNetB3 50 16 87.70 88.60 87.46 88.03 

EfficientNetB3 20 32 81.85 82.98 81.09 84.68 

EfficientNetB3 30 32 86.22 86.67 85.74 86.20 

EfficientNetB3 40 32 93.35 93.75 93.15 93.45 

EfficientNetB3 50 32 90.10 90.40 89.78 90.09 

EfficientNetB3 20 64 90.50 90.86 89.66 90.26 

EfficientNetB3 30 64 91.11 92.25 90.58 91.40 

EfficientNetB3 40 64 87.74 88.25 87.54 87.90 

EfficientNetB3 50 64 88.86 89.95 88.26 89.10 

EfficientNetB3 20 128 90.25 90.60 90.01 90.30 

EfficientNetB3 30 128 95.07 95.29 94.86 95.07 

EfficientNetB3 40 128 94.05 94.77 93.77 94.27 

EfficientNetB3 50 128 92.60 92.97 92.48 92.72 

EfficientNetB4 20 16 90.91 91.59 90.79 91.19 

EfficientNetB4 30 16 87.46 88.01 86.74 87.37 

EfficientNetB4 40 16 88.86 89.28 88.46 88.87 

EfficientNetB4 50 16 91.43 92.16 91.35 91.75 

EfficientNetB4 20 32 77.84 79.07 77.32 78.19 

EfficientNetB4 30 32 91.27 91.62 91.15 91.38 

EfficientNetB4 40 32 88.14 88.54 87.94 88.24 

EfficientNetB4 50 32 92.67 92.84 92.43 92.63 

EfficientNetB4 20 64 89.18 89.91 88.54 89.22 

EfficientNetB4 30 64 89.42 90.17 88.94 89.55 

EfficientNetB4 40 64 90.83 91.18 90.71 90.94 

EfficientNetB4 50 64 89.07 89.89 88.27 89.07 

EfficientNetB4 20 128 91.16 91.57 91.12 91.34 

EfficientNetB4 30 128 95.27 95.77 94.94 95.35 

EfficientNetB4 40 128 89.39 90.09 88.94 89.51 

EfficientNetB4 50 128 95.97 96.13 95.89 96.01 

EfficientNetB5 20 16 87.50 88.08 87.02 87.55 

EfficientNetB5 30 16 92.95 93.27 92.71 92.99 

EfficientNetB5 40 16 95.19 95.44 94.83 95.13 

EfficientNetB5 50 16 96.99 97.25 96.59 96.92 

EfficientNetB5 20 32 83.29 83.92 82.77 83.34 

EfficientNetB5 30 32 93.87 94.26 93.47 93.86 
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EfficientNetB5 40 32 90.87 91.24 90.50 90.87 

EfficientNetB5 50 32 90.71 90.83 90.46 90.64 

EfficientNetB5 20 64 96.51 96.86 96.27 96.56 

EfficientNetB5 30 64 94.54 95.76 93.73 94.73 

EfficientNetB5 40 64 93.51 93.64 93.27 93.45 

EfficientNetB5 50 64 96.55 96.70 96.31 96.50 

EfficientNetB5 20 128 92.48 92.62 92.35 92.48 

EfficientNetB5 30 128 86.10 86.54 85.90 86.22 

EfficientNetB5 40 128 96.63 96.86 96.46 96.66 

EfficientNetB5 50 128 97.12 96.86 96.92 96.89 

EfficientNetB6 20 16 89.82 90.46 88.94 89.70 

EfficientNetB6 30 16 92.99 93.35 92.79 93.07 

EfficientNetB6 40 16 95.03 95.53 94.95 95.24 

EfficientNetB6 50 16 97.28 97.43 97.04 97.23 

EfficientNetB6 20 32 84.66 85.15 84.29 84.72 

EfficientNetB6 30 32 92.63 93.00 92.55 92.77 

EfficientNetB6 40 32 94.51 94.94 93.99 94.46 

EfficientNetB6 50 32 93.79 94.26 93.51 93.88 

EfficientNetB6 20 64 87.50 88.22 87.02 87.62 

EfficientNetB6 30 64 93.51 93.91 93.23 93.57 

EfficientNetB6 40 64 94.35 94.53 94.19 94.36 

EfficientNetB6 50 64 93.31 93.49 93.23 93.36 

EfficientNetB6 20 128 85.86 86.49 85.57 86.03 

EfficientNetB6 30 128 90.17 90.37 89.93 90.15 

EfficientNetB6 40 128 93.79 93.89 93.59 93.74 

EfficientNetB6 50 128 94.09 94.27 93.92 94.10 

EfficientNetB7 20 16 93.39 93.93 93.07 93.50 

EfficientNetB7 30 16 95.03 95.22 95.03 95.12 

EfficientNetB7 40 16 88.34 89.05 87.94 88.50 

EfficientNetB7 50 16 87.06 88.00 86.34 87.16 

EfficientNetB7 20 32 89.14 89.66 88.62 89.14 

EfficientNetB7 30 32 91.19 91.87 91.03 91.45 

EfficientNetB7 40 32 94.07 94.41 93.99 94.20 

EfficientNetB7 50 32 92.51 93.13 92.35 92.74 

EfficientNetB7 20 64 94.83 95.27 94.51 94.89 

EfficientNetB7 30 64 93.50 93.97 93.26 93.61 

EfficientNetB7 40 64 92.11 92.47 91.55 92.00 
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Figure 6: Accuracy of all EfficientNets

count of 50 and a batch size of 64, resulting in an accuracy of 97.83%. The second highest accuracy has been
recorded in EfficientNetB6, with an epoch count of 50 and a batch size 16, resulting in an accuracy of 97.28%.
The pre-trained EfficientNet6 ranked third in accuracy, with 50 epochs and a batch size of 128, achieving an
accuracy of 97.12%. These three models were very successful compared to EfficientNetB3.

 The accuracy performances have been demonstrated in the Figure 6. The best Efficient models have been
taken from the test table.

The Figure 6 shows the accuracy of the most successful EfficientNet models. It may be interesting to see that
EfficientNetB3 performed the poorest out of all of the EfficientNets as EfficientNetB3 is more recent. There are
plausible reasons why this happened. First of all, hyperparameters, such as learning rate, weight decay, and
data augmentation strategies, might have affected the performance of neural networks. Furthermore,
regularization and dropout strength influenced the models, preventing overfitting. As known, data
augmentation plays a critical role in deep learning models/architectures. Another factor can be the choice of
optimizer and the receptive field of the model, learning models/architectures. Another factor can be the choice
of optimizer and the receptive field of the model.

 Table 6 compares this study with others in the literature. The proposed method yields higher accuracy
than most of the existing techniques. The pre-trained model attained an impressive accuracy of 97.83%,
surpassing the results of many other studies on this subject. This study proposes an acceptable model.

Table 6: Comparison of Similar Studies in the Literature

Study Model Accuracy 

This study EfficientNetB7 97.83% 

Wspanialy et al. ResNet-50 97.00% 

Abbas et al. U-Net 97.11% 

Zaki et al. Fine-tuned MobileNet 90.30% 

Mohanty et al. Spatial attention with CNN 95.20% 

Rangarajan et al. VGG16 96.19% 
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8. Conclusion
Detecting plant diseases early can lessen the e-ffect on the harvest, increasing the productivity of the products.
This process can be automated using computer vision and deep learning methods; an example was suggested
in this paper. Moreover, this model may be scaled to detect other plant diseases when adapted to other
crops.

As it may be known, over the past few years, the efficacy of CNNs in image classification has seen significant
advancements. Conventional machine learning methods for disease classification often concentrate on a
limited set of classes, typically within a singular crop or for only one type of disease. However, in this study,
EfficientNets, which is a CNN model, has been used. This study is unique in the field as it compares all
EfficientNets comprehensively, providing both training and testing accuracy results. The utilized dataset
consists of 11,000 images, which are reported in Table 6. The dataset consists of color-level, gray-level, and
binarized images of the same leaf data that have been used in this study; some of the samples can be seen in
Tables 3-5. It was demonstrated in this study that EfficientNetB7 was the best EfficientNets for the color-level
dataset.

It is crucial to highlight that the approach presented in this paper is aimed at improving previous disease
diagnosis methods/techniques rather than substituting them. Other methods may yield more reliable results
compared to diagnoses based on visual cues. Also, early-stage diagnosis solely relying on visual examination
often presents challenges.

This study had several constraints. When assessing images taken in varying conditions from the dataset
used for training the model, there was a considerable decrease in accuracy. Additionally, the classification
was currently restricted to individual leaves oriented upwards against a uniform backdrop.

For further advancements, transfer learning methods hold the potential to utilize various CNN models for
extracting features. Lastly, LeNet, AlexNet, GoogleNet, MobileNetV1, DarkNet, and ResNet can serve as potential
CNN models in addition to EfficentNet. Instead of using softmax in the last layer, SVM and decision-tree-
based can be employed.
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